
Stat 110 Strategic Practice 8 Solutions, Fall 2011

1 Covariance and Correlation

1. Two fair six-sided dice are rolled (one green and one orange), with outcomes
X and Y respectively for the green and the orange.

(a) Compute the covariance of X + Y and X − Y .

Cov(X + Y,X − Y ) = Cov(X,X)− Cov(X, Y ) + Cov(Y,X)− Cov(Y, Y ) = 0.

(b) Are X + Y and X − Y independent? Show that they are, or that they
aren’t (whichever is true).

They are not independent: information about X + Y may give information
about X − Y , as shown by considering an extreme example. Note that if
X + Y = 12, then X = Y = 6, so X − Y = 0. Therefore, P (X − Y =
0|X + Y = 12) = 1 6= P (X − Y = 0), which shows that X + Y and X − Y are
not independent. Alternatively, note that X + Y and X − Y are both even or
both odd, since the difference X + Y − (X − Y ) = 2Y is even.

2. A chicken lays a Poisson(λ) number N of eggs. Each egg, independently,
hatches a chick with probability p. Let X be the number which hatch, so
X|N ∼ Bin(N, p).

Find the correlation between N (the number of eggs) and X (the number of
eggs which hatch). Simplify; your final answer should work out to a simple
function of p (the λ should cancel out).

As shown in class, in this story X is independent of Y , with X ∼ Pois(λp) and
Y ∼ Pois(λq), for q = 1− p. So

Cov(N,X) = Cov(X + Y,X) = Cov(X,X) + Cov(Y,X) = Var(X) = λp,

giving

Corr(N,X) =
λp

SD(N)SD(X)
=

λp√
λλp

=
√
p.
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3. Let X and Y be standardized r.v.s (i.e., marginally they each have mean 0 and
variance 1) with correlation ρ ∈ (−1, 1). Find a, b, c, d (in terms of ρ) such that
Z = aX + bY and W = cX + dY are uncorrelated but still standardized.

Let us look for a solution with Z = X, finding c and d to make Z and W
uncorrelated. By bilinearity of covariance,

Cov(Z,W ) = Cov(X, cX + dY ) = Cov(X, cX) + Cov(X, dY ) = c+ dρ = 0.

Also, Var(W ) = c2 + d2 + 2cdρ = 1. Solving for c, d gives

a = 1, b = 0, c = −ρ/
√

1− ρ2, d = 1/
√

1− ρ2.

4. Let (X1, . . . , Xk) be Multinomial with parameters n and (p1, . . . , pk). Use in-
dicator r.v.s to show that Cov(Xi, Xj) = −npipj for i 6= j.

First let us find Cov(X1, X2). Consider the story of the Multinomial, where n
objects are being placed into categories 1, . . . , k. Let Ii be the indicator r.v. for
object i being in category 1, and let Jj be the indicator r.v. for object j being
in category 2. Then X1 =

∑n
i=1 Ii, X2 =

∑n
j=1 Jj. So

Cov(X1, X2) = Cov(
n∑
i=1

Ii,
n∑
j=1

Jj)

=
∑
i,j

Cov(Ii, Jj).

All the terms here with i 6= j are 0 since the ith object is categorized indepen-
dently of the jth object. So this becomes

n∑
i=1

Cov(Ii, Ji) = nCov(I1, J1) = −np1p2,

since
Cov(I1, J1) = E(I1J1)− (EI1)(EJ1) = −p1p2.

By the same method, we have Cov(Xi, Xj) = −npipj for all i 6= j.

5. Let X and Y be r.v.s. Is it correct to say “max(X, Y ) + min(X, Y ) = X + Y ?
Is it correct to say “Cov(max(X, Y ),min(X, Y )) = Cov(X, Y ) since either the
max is X and the min is Y or vice versa, and covariance is symmetric”?
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The identity max(x, y)+min(x, y) = x+y is true for all numbers x and y. The
random variable M = max(X, Y ) is defined by M(s) = max(X(s), Y (s)); this
just says to perform the random experiment, observe the numerical values of
X and Y , and take their maximum. It follows that

max(X, Y ) + min(X, Y ) = X + Y

for all r.v.s X and Y , since whatever the outcome s of the random experiment
is, we have

max(X(s), Y (s)) + min(X(s), Y (s)) = X(s) + Y (s).

In contrast, the covariance of two r.v.s is a number, not a r.v.; it is not defined
by observing the values of the two r.v.s and then taking their covariance (that
would be a useless quantity, since the covariance between two numbers is 0).
It is wrong to say “Cov(max(X, Y ),min(X, Y )) = Cov(X, Y ) since either the
max is X and the min is Y or vice versa, and covariance is symmetric” since the
r.v. X does not equal the r.v. max(X, Y ), nor does it equal the r.v. min(X, Y ).

To gain more intuition into this, consider a “repeated sampling interpretation,”
where we independently repeat the same experiment many times and observe
pairs (x1, y1), . . . , (xn, yn), where (xj, yj) is the observed value of (X, Y ) for the
jthe experiment. Suppose that X and Y are independent non-constant r.v.s
(and thus they are uncorrelated). Imagine a scatter plot of the observations
(which is just a plot of the points (xj, yj)). Since X and Y are independent,
there should be no pattern or trend in the plot.

On the other hand, imagine a scatter plot of the (max(xj, yj),min(xj, yj))
points. Here we’d expect to see a clear increasing trend (since the max is
always bigger than or equal to the min, so having a large value of the min (rel-
ative to its mean) should make it more likely that we’ll have a large value of the
max (relative to its mean). So it makes sense that max(X, Y ) and min(X, Y )
should be positive correlated. This is illustrated in the plots below, in which
we generated (X1, Y1), . . . , (X100, Y100) with the Xi’s and Yj’s i.i.d. N (0, 1).

The simulation was done in R, which is free, extremely powerful statistics
software available at http://www.r-project.org/, using the following code:

x <- rnorm(100); y <- rnorm(100)

plot(x,y, xlim=c(-3,3),ylim=c(-3,3), col="blue", pch=19)

plot(pmax(x,y),pmin(x,y), xlim=c(-3,3),ylim=c(-3,3), xlab="max(x,y)",

ylab = "min(x,y)", col="green", pch=19)

3



-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

x

y

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

max(x,y)

m
in
(x
,y
)

6. Consider the following method for creating a bivariate Poisson (a joint distribu-
tion for two r.v.s such that both marginals are Poissons). Let X = V +W,Y =
V +Z where V,W,Z are i.i.d. Pois(λ) (the idea is to have something borrowed
and something new but not something old or something blue).

(a) Find Cov(X, Y ).

By bilinearity of covariance,

Cov(X, Y ) = Cov(V, V ) + Cov(V, Z) + Cov(W,V ) + Cov(W,Z) = Var(V ) = λ.

(b) Are X and Y independent? Are they conditionally independent given V ?

Since X and Y are correlated (with covariance λ > 0), they are not indepen-
dent. Alternatively, note that E(Y ) = 2λ but E(Y |X = 0) = λ since if X = 0
occurs then V = 0 occurs. But X and Y are conditionally independent given
V , since the conditional joint PMF is

P (X = x, Y = y|V = v) = P (W = x− v, Z = y − v|V = v)

= P (W = x− v, Z = y − v)

= P (W = x− v)P (Z = y − v)

= P (X = x|V = v)P (Y = y|V = v).
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This makes sense intuitively since if we observe that V = v, then X and Y are
the independent r.v.s W and Z, shifted by the constant v.

(c) Find the joint PMF of X, Y (as a sum).

By (b), a good strategy is to condition on V :

P (X = x, Y = y) =
∞∑
v=0

P (X = x, Y = y|V = v)P (V = v)

=

min(x,y)∑
v=0

P (X = x|V = v)P (Y = y|V = v)P (V = v)

=

min(x,y)∑
v=0

e−λ
λx−v

(x− v)!
e−λ

λy−v

(y − v)!
e−λ

λv

v!

= e−3λλx+y
min(x,y)∑
v=0

λ−v

(x− v)!(y − v)!v!
,

for x and y nonnegative integers. Note that we sum only up to min(x, y) since
we know for sure that V ≤ X and V ≤ Y .

Miracle check: note that P (X = 0, Y = 0) = P (V = 0,W = 0, Z = 0) = e−3λ.

7. Let X be Hypergeometric with parameters b, w, n.

(a) Find E
(
X
2

)
by thinking, without any complicated calculations.

In the story of the Hypergeometric,
(
X
2

)
is the number of pairs of draws such

that both balls are white. Creating an indicator r.v. for each pair, we have

E

(
X

2

)
=

(
n

2

)
w

w + b

w − 1

w + b− 1
.

(b) Use (a) to get the variance of X, confirming the result from class that

Var(X) =
N − n
N − 1

npq,

where N = w + b, p = w/N, q = 1− p.
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By (a),

EX2 − EX = E(X(X − 1)) = n(n− 1)p
w − 1

N − 1
,

so

Var(X) = E(X2)− (EX)2

= n(n− 1)p
w − 1

N − 1
+ np− n2p2

= np

(
(n− 1)(w − 1)

N − 1
+ 1− np

)
= np

(
nw − w − n+N

N − 1
− nw

N

)
= np

(
Nnw −Nw −Nn+N2 −Nnw + nw

N(N − 1)

)
= np

(
(N − n)(N − w)

N(N − 1)

)
=
N − n
N − 1

npq.

2 Transformations

1. Let X ∼ Unif(0, 1). Find the PDFs of X2 and
√
X.

(PDF of X2.) Let Y = X2, 0 < x < 1, and y = x2, so x =
√
y. The absolute

Jacobian is
∣∣∣dxdy ∣∣∣ =

∣∣∣ 1
2
√
y

∣∣∣ = 1
2
√
y

for 0 < y < 1. The PDF of Y for 0 < y < 1 is

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣ =

1

2
√
y

with fY (y) = 0 otherwise. This is the Beta(1
2
, 1) PDF, so Y = X2 ∼ Beta(1

2
, 1).

(PDF of
√
X.) Now let Y = X1/2, 0 < x < 1, and y = x1/2, so x = y2.

The absolute Jacobian is
∣∣∣dxdy ∣∣∣ = |2y| = 2y for 0 < y < 1. The PDF of Y for

0 < y < 1 is

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣ = 2y
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with fY (y) = 0 otherwise. This says that Y has a Beta(2,1) distribution.

In general, the same method shows that if X has a Unif(0,1) distribution and

α > 0, then X
1
α has a Beta(α,1) distribution.

2. Let U ∼ Unif(0, 2π) and let T ∼ Expo(1) be independent of U . Define
X =

√
2T cosU and Y =

√
2T sinU. Find the joint PDF of (X, Y ). Are

they independent? What are their marginal distributions?

The joint PDF of U and T is

fU,T (u, t) =
1

2π
e−t,

for u ∈ (0, 2π) and t > 0. Thinking of (X, Y ) as a point in the (x, y)-plane,
X2 + Y 2 = 2T (cos2(U)+sin2(U)) = 2T is the squared distance from the origin
and U is the angle. To make the change of variables, we need the Jacobian:

J =

∣∣∣∣∂(x, y)

∂(u, t)

∣∣∣∣ =

∣∣∣∣ −√2t sin(u) (2t)−1/2 cos(u)√
2t cos(u) (2t)−1/2 sin(u)

∣∣∣∣
= − sin2(u)− cos2(u)

= −1.

Then

fX,Y (x, y) = fU,T (u, t)|J |−1

=
1

2π
exp

(
−(x2 + y2)

2

)
| − 1|−1

=
1√
2π

exp

(
−x2

2

)
· 1√

2π
exp

(
−y2

2

)
.

This factors into a function of x times a function of y, so X and Y are in-
dependent, and they each have the N (0, 1) distribution. Thus, X and Y are
i.i.d. standard Normal r.v.s; this result is called the Box-Muller method for
generating Normal r.v.s.

3. Let X and Y be independent, continuous r.v.s with PDFs fX and fY respec-
tively, and let T = X + Y . Find the joint PDF of T and X, and use this to
give an alternative proof that fT (t) =

∫∞
−∞ fX(x)fY (t−x)dx, a result obtained

in class using the law of total probability.
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Consider the transformation from (x, y) to (t, w) given by t = x+y and w = x.
(It may seem redundant to make up the new name “w” for x, but this makes it
easier to distinguish between the “old” variables x, y and the “new” variables
t, w.) Correspondingly, consider the transformation from (X, Y ) to (T,W )
given by T = X + Y,W = X. The Jacobian matrix is

∂(t, w)

∂(x, y)
=

(
1 1
1 0

)
,

which has absolute determinant equal to 1. Thus, the joint PDF of T,W is

fT,W (t, w) = fX,Y (x, y) = fX(x)fY (y) = fX(w)fY (t− w),

and the marginal PDF of T is

fT (t) =

∫ ∞
−∞

fT,W (t, w)dw =

∫ ∞
−∞

fX(x)fY (t− x)dx.

3 Existence

1. Let S be a set of binary strings a1 . . . an of length n (where juxtaposition
means concatenation). We call S k-complete if for any indices 1 ≤ i1 < · · · <
ik ≤ n and any binary string b1 . . . bk of length k, there is a string s1 . . . sn
in S such that si1si2 . . . sik = b1b2 . . . bk. For example, for n = 3, the set
S = {001, 010, 011, 100, 101, 110} is 2-complete since all 4 patterns of 0’s and
1’s of length 2 can be found in any 2 positions. Show that if

(
n
k

)
2k(1−2−k)m < 1,

then there exists a k-complete set of size at most m.

Generate m random strings of length n independently, using fair coin flips to
determine each bit. Let S be the resulting random set of strings. If we can
show that the probability that S is k-complete is positive, then we know that
a k-complete set of size at most m must exist. Let A be the event that S is
k-complete. Let N =

(
n
k

)
2k and let A1, . . . , AN be the events of the form “S

contains a string which is b1 . . . bk at coordinates i1 < · · · < ik,” in any fixed
order. For example, if k = 3 then A1 could be the event “S has an element
which is 110 at positions 1, 2, 3.” Then P (A) > 0 since

P (Ac) = P (∪Nj=1A
c
j) ≤

N∑
j=1

P (Acj) = N(1− 2−k)m < 1.
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2. A hundred students have taken an exam consisting of 8 problems, and for each
problem at least 65 of the students got the right answer. Show that there exist
two students who collectively got everything right, in the sense that for each
problem, at least one of the two got it right.

Say that the “score” of a pair of students is how many problems at least one of
them got right. The expected score of a random pair of students (with all pairs
equally likely) is at least 8(1− 0.352) = 7.02, as seen by creating an indicator
r.v. for each problem for the event that at least one student in the pair got it
right. (We can also improve the 0.352 to 35

100
· 34
99

since the students are sampled
without replacement.) So some pair of students must have gotten a score of at
least 7.02, which means that they got a score of 8! (← not a factorial.)

3. The circumference of a circle is colored with red and blue ink such that 2/3 of
the circumference is red and 1/3 is blue. Prove that no matter how complicated
the coloring scheme is, there is a way to inscribe a square in the circle such
that at least three of the four corners of the square touch red ink.

Consider a random square, obtained by picking a uniformly random point on
the circumference and inscribing a square with that point a corner; say that the
corners are U1, . . . , U4, in clockwise order starting with the initial point chosen.
Let Ij be the indicator r.v. of Uj touching red ink. By symmetry, E(Ij) = 2/3
so by linearity, the expected number of corners touching red ink is 8/3. Thus,
there must exist an inscribed square with at least 8/3 of its corners touching
red ink. Such a square must have at least 3 of its corners touching red ink.

4. Ten points in the plane are designated. You have ten circular coins (of the same
radius). Show that you can position the coins in the plane (without stacking
them) so that all ten points are covered.

Hint: consider a honeycomb tiling as in http://mathworld.wolfram.com/Honeycomb.html.
You can use the fact from geometry that if a circle is inscribed in a hexagon
then the ratio of the area of the circle to the area of the hexagon is π

2
√
3
> 0.9.

Take a uniformly random honeycomb tiling (to do this, start with any honey-
comb tiling and then shift it horizontally and vertically by uniformly random
amounts; by periodicity there is a bound on how large the shifts need to be).
Choose the tiling so that a circle the same size as one of the coins can be
inscribed in each hexagon. Then inscribe a circle in each hexagon, and let Ij
be the indicator r.v. for the jth point being contained inside one the circles.
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We have E(Ij) > 0.9 by the geometric fact mentioned above, so by linearity
E(I1 + · · ·+ I10) > 9. Thus, there is a positioning of the honeycomb tiling such
that all 10 points are contained inside the circles. Putting coins on top of the
circles containing the points, we can cover all ten points.
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