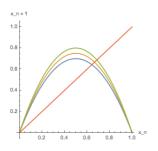
Class 21: Maps

Goals for the day:

- 1. Use map ideas to examine Newton's method of finding roots.
- 2. Become more familiar with the flip bifurcation and distinguish between sub-/super-critical cases.
- 3. Learn about the shift map (time permitting).
- 1. (10.1.12-13) A fixed point, x^* , is called *superstable* if $\lambda = \frac{df}{dx}|_{x^*} = 0$. To determine stability we check whether $|\lambda| < 1$, so $|\lambda| = 0$ is the minimum value it can attain. Usually for a perturbation η_0 away from the fixed point, $\eta_1 \sim \lambda \eta_0$ and $\eta_n \sim \lambda^n \eta_0$. For a superstable fixed point, convergence is much faster.

Newton's method is a method of finding the roots of an equation of the form g(x) = 0. With this method, you make an initial guess of the root, x_0 . You then update your guess in the following way: find the slope of g(x) at your guess; starting at $(x_0, g(x_0))$ and moving along a line with slope $g'(x_0)$, determine where you will intersect the x-axis; use this intersection point as your new guess of the root.

- (a) Write a map $x_{n+1} = f(x_n)$ that encodes this algorithm in terms of x_n , $g(x_n)$ and $\frac{dg}{dx}|_{x_n}$.
- (b) Consider the example of $g(x) = x^2 4 = 0$. Write the "Newton map" for this example.
- (c) Find the fixed points of this map.
- (d) For the example map above, show that the fixed points are superstable.
- (e) Iterate the map starting from $x_0 = 1$. Take just two iterates. How close are you to a fixed point?
- (f) Now find an expression for the fixed points for general g(x), assuming $g'(x) \neq 0$.
- (g) Show that these fixed points (of the general map) are superstable (assuming $g'(x) \neq 0$).
- 2. Consider the logistic map, given by $x_{n+1} = f(x_n)$ where f(x) = rx(1-x).
 - (a) For what r does it have a superstable fixed point?
 - (b) In the figure below, the logistic map is shown for three values of r (on either side of the flip bifurcation). The *flip bifurcation* happens when $f'(x^*) = -1$. A flip bifurcation is a point where period-doubling occurs. The bifurcation can be either supercritical or subcritical. To determine which it is, we need to analyze the stability of the two-cycle after the bifurcation. Let p and q be fixed points of the map $f^2(x) = f(f(x))$ that are not also fixed points of f(x).



Note that q = f(p) and p = f(q). Computing $\lambda = \frac{d}{dx}f(f(x))$, we find $\lambda = f'(f(p))f'(p) = f'(q)f'(p)$. If $|\lambda| < 1$ then the 2-cycle is stable. Determine the range of r for which this two-cycle is stable.

The roots, p and q, are roots of the quartic given by f(f(x)). We know x = 0 and $x = 1 - \frac{1}{r}$ are also solutions to this quartic, so we can find p, q as roots of the remaining quadratic. They are $p, q = \frac{1}{2} + \frac{1}{2r} \pm \frac{\sqrt{(r-3)(r+1)}}{2r}$. In addition, $p + q = 1 + \frac{1}{r}$ and $pq = \frac{1+r}{r^2}$.

3. (10.3.7) If time permits, consider the decimal shift map, $x_{n+1} = 10x_n \mod 1$.

- (a) Draw a map of this graph, restricting yourself to $0 \le x \le 1$.
- (b) Identify the fixed points, using a decimal representation. Looking to your map, are they stable?
- (c) Show the map has a periodic point of any period (by giving an explicitly constructed example, perhaps).
- (d) Does the map have aperiodic orbits? Find an example of one.
- (e) This map has sensitive dependence on initial conditions. Consider two nearby initial points and find their rate of separation.

Some Answers:

1. (a) We have y = mx + b is the line through $(x_n, g(x_n))$ with slope $g'(x_n)$. So $m = g'(x_n)$. We want the intersection with the x-axis, so $0 = mx_{n+1} + b$. Since $g(x_n) = g'(x_n)x_n + b$, we know $b = g(x_n) - g'(x_n)x_n$. Given that $x_{n+1} = -\frac{b}{m}$, $\Rightarrow x_{n+1} = -\frac{g(x_n) - g'(x_n)x_n}{g'(x_n)}$. Simplifying, this becomes $x_{n+1} = f(x_n)$ where

$$f(x_n) = x_n - \frac{1}{\frac{dg}{dx}|_{x_n}}g(x_n).$$

- (b) $x_{n+1} = x_n \frac{x_n^2 4}{2x_n} = \frac{x_n^2 + 4}{2x_n}.$
- (c) Fixed points are given by $x \frac{x^2-4}{2x} = x$ and the *xs* cancel so $\frac{x^2-4}{2x} = 0$. This is zero when the numerator is zero, so when $x^2 4 = 0$. Thus $x = \pm 2$.
- (d) For stability, need to check f'(x) which is $1 \frac{2x}{2x} + \frac{x^2 4}{4x^2} 2 = \frac{x^2 4}{2x^2}$ and this is 0 at $x = \pm 2$ so the fixed points are superstable.
- (e) $x_0 = 1$ so $x_1 = 1 \frac{1-4}{2} = 1 + \frac{3}{2} = \frac{5}{2} = 2.5$. Then $x_2 = \frac{5}{2} \frac{\frac{25}{4} 4}{5} = \frac{5}{2} \frac{9}{20} = \frac{41}{20} = 2.05$. That was pretty fast convergence towards 2!
- (f) For general fixed points, $x \frac{g}{g'} = x$ so $-\frac{g}{g'} = 0$. Away from g' = 0 this just means we need g = 0, and the fixed points are the roots.
- (g) For stability, $1 \frac{g'}{g'} + \frac{g}{g'^2}g''$ and this simplifies to $\frac{g}{g'^2}g''$ but at the roots of g = 0, this is certainly 0 (so long as we're staying away from g' = 0), so the fixed points are superstable.
- 2. (a) f' at $1 \frac{1}{r}$ is 2 r so superstable when r = 2.
 - (b) $\lambda = f'(q)f'(p) = r(1-2q)r(1-2p) = r^2[1-2(p+q)+4pq] = 4+2r+r^2$. We want $|\lambda| < 1$. So $4+2r-r^2 = 1$ and $4+2r-r^2 = -1$ form the bounds in r. This means $r^2-2r-3=0$ so r=3 or r=-1 and $r^2-2r+5=0$ so $r=1\pm\sqrt{6}$. $1+\sqrt{6}\approx 3.449$ so $3 < r < 1+\sqrt{6}$. So $3 < r < 1+\sqrt{6}$.
- 3. Map is below. Fixed points are of the form 0.11111..., 0.2222..., etc. The slope of f(x) is greater than 1 so the fixed points are unstable. To get period-2, 0.1212..., to get period-3 0.122122..., etc. For an aperiodic orbit, try $\sqrt{2} - 1$ or $\pi - 3$ or e - 2. For sensitive dependence, consider 0.111... and 0.1112. These start at $\delta_0 \approx 0.0001$ apart, then become 0.111... and 0.112 after one iterate so $\delta_1 \approx 0.001$ apart, then become 0.111... and 0.12 so $\delta_2 \approx 0.01$ apart. This is changing by a factor of 10 each time, so $\|\delta_n\| \sim \|\delta_0\| 10^n = \|\delta_0\| e^{nln10}$. We call ln 10 the Liapunov exponent in this map context.